2017年7月8日雅思阅读考试回忆及解析
2017年7月8日雅思阅读考试回忆及解析 一、 考试概述: 本次考试的文章中前两篇为新题,最后一篇为旧题。从题型上面分析,本次考试依然出现了多选题,这就需要大家在准备考试时还是需要把所有题型都准备一遍。不仅如此,本次考试还出现了大量令考生望而生畏的配对题。像第三篇关于减小班级规模的文章中,14道题目全部为配对题。这就需要大家平时在练习时还是多从文章的结构入手,提高解题速度。 二、具体题目分析 Passage 1: 题目:The Tunnel Under the Thames 题型:判断题8+填空题5 新旧程度:新题 文章大意:英国有必要建造一条连接南北的地下管道,一个叫Trevithick的专家在没有前人的经验下领队动工,但是由于现有技术的局限性导致终止了工程。之后,另一个叫Brunel的专家也尝试建造,但是由于他的设计催在空气污染等问题,并且他在建造过程中缺少资金,最后这个隧道停工了。之后,基于这些经验,描述了泰晤士河下地下管道建设的现状。 参考文章: The Tunnel Under the Thames At the beginning of the 19th century, the port of London was the busiest in the world. Cargoes that had traveled thousands of miles, and survived all the hazards of the sea, piled up on the wharves of Rotherhithe—only for their owners to discover that the slowest, most frustrating portion of their journey often lay ahead of them. Consignments intended for the southern (and most heavily populated) parts of Britain had to be heaved onto creaking ox carts and hauled through the docklands and across London Bridge, which had been built in the 12th century and was as cramped and impractical as its early date implied. By 1820, it had become the center of the world’s largest traffic jam. It was a situation intolerable to a city with London’s pride, and it was clear that if private enterprise could build another crossing closer to the docks, there would be a tidy profit to be made in tolls. Another bridge was out of the question—it would deny sailing ships access to the Pool of London—and ambitious men turned their thoughts to driving a tunnel beneath the Thames instead. This was not such an obvious idea as it might appear. Although demand for coal was growing fast as the industrial revolution hit high gear, working methods remained primitive. Tunnels were dug by men wielding picks in sputtering candlelight. No engineers had tunneled under a major river, and the Thames was an especially tricky river. To the north, London was built on a solid bed of clay, ideal tunneling material. To the south and east, however, lay deeper strata of water-bearing sand, gravel and oozing quicksand, all broken up by layers of gravel, silt, petrified trees and the debris of ancient oyster beds. The ground was semi-liquid, and at depth it became highly pressurized, threatening to burst into any construction site. The chief engineer of this first tunnel project was a muscular giant named Richard Trevithick, a self-educated man who had progressed from youthful fame as a Cornish wrestler by displaying a dazzling talent for invention. Trevithick had harnessed steam power to drive the first self-propelled engine to run on rails and designed the world’s first high-pressure steam engine. He was convinced that a tunnel could be hacked out under the Thames relatively easily. It did not take long for him to realize he was wrong. Trevithick’s men made fine progress while tunneling through London clay, but once they got under the Thames they had constant trouble. Their pilot tunnel was just five feet high and three feet wide, and sewage-laden water seeped in from the river, thirty feet above their heads, at the rate of 20 gallons a minute. Within this narrow space three miners worked on their knees, one hewing at the face with his pick, another clearing away the sodden earth, the third shoring up the drift with timbers. Working conditions during the six-hour shifts were appalling; the men were soaked with sweat and river water, no one could stand or stretch, and the tunnel was so poorly ventilated that the fetid air sometimes extinguished the candles. At that time, the only machines used in mines were pumps. It took a man of genius to recognize that a different sort of machine was needed—a machine that could both prevent the roof and walls from collapsing and hold back any quicksand or water at the tunnel face. This man was Marc Brunel, an emigré who had fled his native France during the Revolution and quickly made a name for himself as one of the most prominent engineers in Britain. Not long after the failure of the Thames Archway Company, Brunel happened to be wandering through the Royal Dockyard at Chatham when he noticed a rotten piece of ship’s timber lying on the quay. Examining the wood through a magnifying glass, he observed that it had been infested with the dreaded teredo, or shipworm, whose rasping jaws can riddle a wooden ship with holes. As it burrows, this ‘worm’ (it is actually a mollusk) shoves pulped wood into its mouth and digests it, excreting a hard, brittle residue that lines the tunnel it has excavated and renders it safe from predators. From then on the project proved ever more difficult. Brunel’s machine could cope with the sodden mud and dry gravel that his miners encountered nearly as well as clay, but he ran short of funds. The economies that followed left the shaft was poorly drained and ventilated, and miners were poisoned by the polluted river water or afflicted by illnesses ranging from diarrhea and constant headaches to temporary blindness. Most of Brunel’s workers complained of feeling suffocated and tormented by temperatures that could plunge or rise by as much as 30 degrees Fahrenheit within an hour. One miner died of disease. Brunel’s triumph was only partial. Once again his company’s funds were at a low ebb, and the tens of thousands of penny-a-head visitors hardly paid the interest on the government loan There was never enough to complete the approaches to the tunnel and make it accessible to horse-drawn vehicles, as intended. Instead, the passageways were filled with souvenir-sellers by day and by the city’s homeless at night. For a penny toll, vagrants could bed down under Brunel’s arches in what became known as the Hades Hotel. It was only when the underground railway came to London in the 1860s that the Thames Tunnel achieved a measure of real usefulness. Purchased by the East London Railway in 1869, it was found to be in such excellent condition that it was immediately be pressed into service carrying steam-driven trains—at first along the Brighton line and later from Wapping to New Cross. The tunnel became, and remains, part of the London Underground network. It is a tribute to Trevithick and Brunel—and mute testimony to the difficulties of tunneling in London—that it remained the only subway line so far to the east until the opening of the Jubilee Line Extension in 1999. 参考答案: 判断: 1. NOT GIVEN 2. TRUE 3. TURE 4. FALSE 5. TURE 6. NOT GIVEN 7. 待补充 8. FALSE Summary填空: Preparing: 9. technique 10. solidarity Problems: 11. headaches 12. accidents 13. government (答案仅供参考) 相关资料 |